The transformation picture for g (z) and g | (z). Which is which?
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Step 3: Combining steps 1 and 2, we showed that for each z, € D(0; 1) every
conformal diffeomorphism of the unit disk with -
£(0) =2,
can be written as
i
f(2) =g, (e72)

1£ qiven suelan £ wntn £(0)= 2,
for some choice of 6. Proof: Thegcompoksm(?n%u?{étlon )=

g—zO f 3—%0(5.(0\\ = j-'hohﬂ: % \
1s a conformal diffeomorphism of the unit disk Which maps the origin to itself. Thus
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Riemann Mapping Theorem (version 1)
Let 4 = C (but 4 #+ C) be open and simply connected.

Letzy€ 4. Let6 € (-=, |
Then 3! f: 4A—D(0; 1) such that f is a conformal bijection satisfying
. f (ZO) =0
o arg(f'(z))=0
Note that this means there are three real degrees of freedom for conformal bijections
with the disk: 2 from the choice of z, and one from the choice of the argument of

J"(20)- So we probably missed some of the possibilities in our early examples. But we
just proved both existence and uniqueness for conformal transformations of the unit disk

though, once Z, and O are specified, using Mobius transformations and rotations.

ha~d. 2-q qu Eow ~lUve| Langd . (/\.)Ja.pulmu
The existence part of the general proof for any open simply connected subset of C
except C itself would take several lectures to explain and we won't do it in this course.
But we already have the tools to prove uniqueness:

proof of uniqueness: Suppose fi, f> satisfy the conditions above. Define
g=fyofi1:D(0;1)>D(0;1). »

Use our earlier discussion. oOr—9
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Riemann Mapping Theorem (version 2)
Let 4, B = C be open and simply connected but not all of C.
Letzy €4, wyEB,0€ (-n, ). -
Then 3! f: 4 — B such that f is a conformal bijection satisfying
J (Zo) W

arg(f"(z)) =0
proof: Chase the diagram arrows below to prove existence and uniqueness from
versionl of the RMT: Letting f, fz be as in version 1 on the previous page, say with

arguments of the derivative at z, both equal to zero; along with a rotation of the unit
disk. In other words, show that

¥ S2=5" (%)

is the unique conformal transformation that works.
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It turns out that the maps we were missing in the examples from the start of class were
compositions of the ones we found, with fractional linear transformations, of which
Mobius transformations are examples.

Def a fractional linear transformation (FLT) f: CN {0 }—->CU {© } isa
meromorphic function defined by

az+b Miob:
. = — 2.9 tns
fla) =22, b 2
where a, b, ¢, d € C and % L+ 22
a b
o ad— bc=det #* 0.
c

Note that when the determinant does equal zero, the function f is just a constant. Also,
one could normalize the determinant to be 1 by dividing all of the coefficients by the
same number (a square root of the determinant).

az+b
° = =
Example f(z)=az+b 0-+ 1

e the only one-to-one conformal maps defined on all of C. Notice that they are
conformal bijections of C.

You will show in your homework that these are

40
® Exercise Why is there no conformal bijection f: C—D(0; 1) ? It's a one-line answer
if you can think of it. 15 {. exiskd b owmdd be e bowedud M{-M o
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([/\'w\v(llx)



The algebra of fractional linear transformations: Show that if

_az+b
G cz+d
ow+
gw)=—"-
Yw+ 90
Then (%‘o
Az+B  _ o (k) - 2 (59
g(f(Z)Fﬁ "3(@}1:4]" cred) ‘S
¥ (AR +§
where 49 C2 th
A 8| [aplap] =2brr:gled)
- ¥ (an #k) + §(cz+d)
C D Y 6 c.d = (ata3Be)2 4 (xb*Pd)

A matrix for the composition FLT can be obtained by multiplying t(h.bé"Ln‘l—z'ist‘r'i\(%s“fo(rK %ﬁe“)
individual FLTs!

Geometers would say: The group SL(2, C) ("The special linear group of 2 x 2
matrices with entries from C) acts on the Riemann slphe¥e CU { o }. The word special
refers to the fact that each FLT can be represented'\&géafiel?w;ah a matrix having
determinant exactly equal to 1, and the word acts refers to the fact that matrix
multiplication (the group operation) in the group, corresponds to composition of

transformations on the Riemann sphere.

To be continued .... this algebra makes composing and finding inverses for FLT's
straightforward. On Wednesday we'll continue this discussion and explain interesting
geometry related to FLT's.



Math 4200

Wednesday November 25
Chapter 5: 5.1-5.2 conformal maps and fractional linear transformations, continued.

We'll begin by finishing the discussion in Monday's notes. Then we'll discuss the
algebra and geometry of linear fractional transformations, which are introduced there.
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Math 4200-001
Week 14 concepts and homework
5.1-5.2
Due Thursday December 3 at 11:59 p.m.

5.1: 10, 11, 12.
52 1,4a,6,7,9, 10, 17, 24, 26, 33, 34



Continuing the discussion from Monday,

Example Let

_az+b ld(x)= 2 * 0
/) cz+d 0r +\

be a (non-constant) FLT. Use matrix algebra to find a formula for 7~ : (z).

w\ajﬂk'x ’FV“L S

~ b
c 4
® matwa ’FV\ ﬁ-_\
d b 12 - b
* -1 -
[-C q} 5 T

Corollary Fractional linear transformations are bijections of the Riemann sphere

CU {®}. In fact, regarding the Riemann sphere as a Riemann surface (see later
discussion), it turns out that these ali=ef the only conformal bijections of the Riemann
sphere with itself. e,



o Qi -[-oda; n

Theorem Fractional linear transformations map the set of all circles and lines to itself.

proof: Any circle or line in the x — y plane can be described implicitly as the solution
set to an equation

A(*+)*)+Bx+ Cy+D=0
where A, B, C, D € R and are not all zero.

We already know that translating or rotating circles (resp. lines) yields circles (resp.
lines). So the Theorem holds for the first two transformations below. Show it also
holds for inversions, the third transformation.

¢ T,(z)=z+ a (translation)

* T,(z)=cz  (rotation-dilation) I

cireles = ea'roles , bintg = [Vraes
1)

thack \, . T,(z) = 1 (inversion)
z

convert the solution set of an equation of form (1) into the solutions set of a (different)

equation of form (1). | x- iy X -1 " -
—E(Xflj.): ;‘:’ %_: = ey 3'7_/ - Tut * (_%—L\
1 T N S a

= wtaiv

salh, st A(x"wﬂ* er"-C7 +D=0 Wats
= o A+Bx +Ccy + D =f
R T

A+ Bu -Cyv+ D)=
0

Then show that any fractional linear transformation
az+b q l
z) = =23 4 (-
1s a composition of translations, rotation-dilations, and inversions. Hint: Treat
c=0, ¢ # 0 separately. If ¢ # 0 first do something equivalent to long division to
rewrite f. Y%

czrd faz+l
6z +od/,

_/, ! . - A
ﬁ FG)=c? =2,

hha=sed=ey o fohiifef |
% JC:', (2 )= —._g; = 2y
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Notice that

f(Z):z—a(c—b)

z—b\c—a
maps
a—0
b—
c— 1.
Since 3 points uniquely determine particular circles one can use FLT's to map any circle
or line to any other circle or line.

Using functions of this form, and their inverses, one can construct FLT's to map triples
of points to triples of points:

a d
b | — e
¢ f

Thus you can map any line or circle to any other line or circle.

Example Find a FLT from the unit disk to the upper half plane by mapping

-1-0

1] —

-i—1
and making any necessary adjustments. (By magic, once you know the boundary of the
disk goes to the real axis, you only have to check that one interior point goes to an
interior point, or that the orientation is correct along the boundary, to know that you're
mapping the unit disk to the upper half plane instead of the lower half plane. The proof
of the magic theorem is an appendix in today's notes.)




Example Find a conformal transformation of the first quadrant to the unit disk, so that
the image of 1 + i is the origin. How many such conformal transformations are there?
It's fine to write your transformation as a composition.



Riemann surfaces: These are special cases of two-dimensional differentiable manifolds,
in the case that the transition functions between atlas pages are all conformal
diffeomorphisms. (See Wikipedia.)

Definition A Riemann surface S is a topological space S together with an atlas

consisting of charts {ch’ (p(x} where
o€ 4
() U U =Sandeach U isopen.
a4 * o

(2) Each ® Ua—> V(x < C is a homeomorphism. We can call the sets V' pages of the
o

atlas.
(3) The transition maps between parts of the pages of the atlas

(pB ° (p(;1 : (pa(Uaﬂ UB) —>(pB(Uaﬂ UB) are all conformal.



This definition makes sense when you think of what an actual geographical atlas is,
along with a few concrete examples including the Riemann sphere:

The complex plane itself, or any open set in the complex plane is a Riemann surface
which has one possible atlas consisting of a single page, with U=V and ¢ =id.

The Riemann sphere CU { « }, which is homeomorphic to the unit sphere in R3, as
we've discussed. The easiest atlas to use has two pages:

UIZC, (Pl:Ul_)VIZC,
¢ (z) =z
Uy= (C{0})U (e}, @,: U= V,=C

1

— ZzF X

n=€ U, = (€ 1oy viasy

L wEw
3 SO i w0 W= 9
@ %)= O,



Definition: Let S;, S, be Riemann surfaces, and f: §; —.S, be a function. Then f is
analytic if and only if each of the corresponding maps from atlas pages of S| to atlas
pages of S, are analytic. Precisely, given an atlas for S;:
{U , 0 U >V |
o o o o
aE 4
and and atlas for S,

Oq X, : O, W, |
{ B B B Be s
then f is defined to be analytic if and only if each triple composition

ofo -1. —
Xgoloe, YV =Wy

1s analytic.

5
S,— %,
\J
W, O,
/ 9, *e
V,E @ ey W€ €

So for a function f: C— CU o there are two cases to consider, in order to deduce
whether f is analytic near z,, as a map of Riemann surfaces:

f(zp) € C: usual definition.

f(zy) & C or undefined: Does have a removable singularity at z;? In other

1
f(z)

words does f(z) have a pole at z), so that f(z)) = ?

The text defined a meromorphic function on C to be one which is analytic except for a
countable number of pole singularities. This corresponds to f: C— CU o being
analytic as a function between Riemann surfaces.



For a function f: CU» —CU o there are two additional cases to consider to decide
whether f is analytic as a function between Riemann surfaces:

zp=%, f(z) € C: Does f ( %) have a removable singularity at z=07?

)

zp=%2,f(z) & C: Does have a removable singularity at z=07?



Appendix: Magic Theorem Let 4, B & R* be open, connected, bounded sets.
Let f:A—-R", fE€ C', with df :T R —>Tf(x)IR” invertible V x € 4 (i.e. the Jacobian matrix is
invertible). Furthermore, assume

« f:A—Rr is continuous and one-to-one.
- f(84)=388B
. f(xo) € B for at least one x, € 4.
Then f(A) =B and f is a global diffeomorphism between 4 and B. (i.e. f 1. B—4is also

differentiable), and f~': B—4 is continuous.

&
/——_\)ﬁ?
$
MN—T______—
_S-l
proof: Step 1: f(4) € B.
proof: Let
O :={x€e4d|f(x) €B}
Then
cx, € 0]

+ O is open by the local inverse function theorem, since x € O and f (x1 ) € B implies there is a

local inverse function from an open neighborhood of f (x1 ) in B, back to a neighborhood of x in 4.
+ O s closed in 4 because if {xk} c 0, {xk}—>x € A then {f(xk) }—>f(x) and since

{ f (xk) } < B we have f(x) € B. Butsince f is one-one and maps the boundary of 4 bijectively to the

boundary of B, f(x) cannot be in the boundary of B. Thus f(x) € B.
« Thus, since 4 is connected, O is all of 4, and f(4) S B.

Step 2: f(4) =B.
proof:
« f(A) 1s open (by the local inverse function theorem again), so f(A4) S B is open.
« And f(A) is closed in B because if
{f(xk) } = {yk} < f(4), with {yk}—>y € B,

then because A is compact, a subsequence {xk }—>x € A with {f(xk ) }—>f(x) =y,s0x & 3 4
J J
because y € B,sox € 4 and y € f(4).
+ So, because B is connected, f(A4) is all of B.

QED.



Remark: In C you can also imply this theorem to unbounded domains, i.e. in CU { o } because of the
following diagram, in which f, o f fl_1 satisfies the hypotheses of the original theorem:

-
. B

¢ d A

f.o: ;";, 0 = filw= =

N
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